
B L A C K W O O D  D E S I G N S  

Beautiful 
Structures 

  

  

A U T H O R  R A N D A L L  M A A S  

  

O V E R V I E W  Structuring data and processing in a project 

B E N E F I T S  Smaller memory footprint, faster execution, often easier to understand than other methods 

H O W  I T  W O R K S  Matrix methods: 
Bitmaps 
Directed Acyclic Graphs 
LALR(1) parser state machines 

U S E S  Binary relations 

Decision Trees 

Keyword searches 

Resource management 

Semantic feature sets 

Personalization 

Solving practical math problems, including those with units & unit conversion 

S T R U C T U R E S  Arrays 
Bitmaps – packed, hierarchical 
Bloom filters 
Buffers – including character-lists (‘clists’) 
Graphs – floor maps, scene graphs 
Lists – linked, XOR doubly-linked lists 
Name-value pairs (hash tables) 
Sets 
String matching 
Trees – linked-lists, depth first, and decision trees 

  

  

Copyright © 2007-2018 Blackwood 
Designs, LLC.  All rights reserved. No 
part of this document may be 
reproduced or transmitted in any form 
or by any means, electronic or 
mechanical, including photocopying 
and recording, for any purpose, 
without the express written permission 
of Blackwood Designs. F I L E : G:\My Documents\BD4 SW Design Documents\Beautiful Structures;3.doc 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   1 

 

lists 

p3 p3 p4 p4 p4 

bitmap 

p5 p5 p5 

  

buffers and tables 

p6,8 p7 p6 p8 p10 

trees 

p10 p10 p12 p11 

rtree 

timers Simple 

p 

  

p8 

matrix Flat 

p16 p16 

  

finite automatons 

p14 p14 

 

p9 

 

networking 

    

 

3d 

p18 p18 p18 

  



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   2 

 

 

6-7 Buffers   

    

 GRAPHICS  NETWORK REPRESENTATIONS 

12,11 Floor maps 3 Linked Lists 

11,17-18 Geometry, floor plans, level maps 10-11 Trees 

12,11,17-18 Representing 2-D and 3-D objects 9 DAG 

 Texture Maps 9,12 Directed n-Dimension networks 

   Weighted Incidence Matrix 

    

6, 14 INFERENCE  SCHEDULERS 

6 Binary relations 7 Control bands 

14 Decision trees 6,9 Dependency Ordered 

 Deontic Logic 7 Event-driven 

15 Parsing 6 Flow-Control 

15 Routing table   

5 Screening 4,5,6 Run Lists 

13 Type Conversion 7-8 Time-triggered 

13 Unit Conversion 5 Usage 

19 Unification   

   SETS 

 LANGUAGE 3,11 Containment hierarchy 

15 Generating Text 5,6 Counting items 

15 Morphological Analysis: derivation, 

inflection, pluralization, conjugation 

3,5, 7-9 Ordered sets of items 

15 Parsing  Scene Graphs 

15 Spell Checking 3-6 Sets of items 

  5,8,9 Sorting items 

    

 MAPPING  SETS REPRESENTATIONS 

5-6 Binary relations 5 Bitmaps 

6,9 Semantic feature sets 3 Linked Lists 

15 File-system mount tables 4,5,6 Cache, Least Recently Used 

12,11 Floor maps 6 Queues 

10 Annotating text and strings 6 Tables 

11,17-18 Geometry, floor plans, level maps 5,8,9,14-15 Hashing 

 Texture Maps 10 Trees 

  10,10 Trees in the form of arrays 

  



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   3 

 

 

Beautiful 
Structures 

This note describes wonderful structures.  A structure characterizes how an entity – or a set of 

entities – is represented and manipulated.  Structures have a key role, guiding the decomposition 

of a task or problem.  The definitions of the structures are concrete – specifying their key nodes 

and defining fields.  Of course, extra fields may be added to hold contents without changing the 

structure.  Often a field is limited in what it may reference, or the values it may take. 

There are analytical ways of classifying how a structure uses space, time, and work.  For 

instance, complexity theory tells us if a structure becomes ugly with use.  Yet these only tell us 

when a structure is not beautiful. 

Beauty lies in the structure’s compactness, cleverness, its choice of supported features, or 

generality.  Typically such a structure has few fields, is easy to manipulate, and does interesting 

things, while remaining analytically simple.  Elegance may be judged by the description’s 

complexity, and how well we diagram examples of the structure. 

1 Linked Lists 
Linked lists are defined by their use of the next field.  Each record links to the next record in the 

list.  The simplest lists terminate, with a nil reference at the end. 

next next

 

HIERARCHIES are sets partitioned into A  B, B  C and so forth.  These can be implemented 

using linked lists with something similar to: 

C B A

next next next

 

STACKS (e.g.  resource pools) can be implemented as linked lists, with easy support for multi-

processing environments.  This requires a fixed head node pointing to the first item, with an 

associated count.  Items are pushed onto the stack by: 

1. Creating a new node that holds the contents and whose next is equal to the contents 

of Head. 

2. Atomically updating (e.g. cmpxchg) the Head pointer to point to the new node.  If 

that failes, repeat from step 1. 

Figure 1: Linked list 

Figure 2: Hierarchical 

containment using 

linked lists 

e.g. whether a field may 

reference the current node, 

whether cycles are allowed, 

whether a node can have 

multiple parents. 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   4 

 

Removing an item from the list is not symmetrical – it requires an extra step: 

1. Create a copy of the Head structure (the First pointer and Count), called Tmp1 

2. Create a new Head structure, called Tmp2, where First = Tmp1.First->Next and 

Count = Tmp1.Count+1 

3. Atomically update (e.g. cmpxchg against Tmp1 and Tmp2) the whole Head 

structure to new Tmp2 structure.  If it failed, repeat from step 1. 

The Count field is needed to prevent a problem such as another thread removing two items, then 

pushing the first item back again.  That is, Tmp1’s First field is correct, but its Next field (and 

Tmp2’s First) is not. 

1.1 Circular lists 

Circular lists make it easy to append and prepend, as well as dequeue from the head or tail.  The 

head points to the last item of the list.  The first item is the “next” after the last – circular lists 

aren’t nil terminated.  Prepending is a matter of inserting an item after the “last” item.  

Appending to the list is the same as prepending, except that the head node must also be updated. 

next next

next

Last

 

1.2 Doubly Linked List 

Doubly linked lists can be traversed in reverse order, and a node can be inserted before or after 

any arbitrary node (e.g. to support ordered lists or containment hierarchies) without scanning the 

list. 

prev
next

prev

next

 

This allows us to make an LRU cache without a per-element timestamp (or a clock).  The list 

reflects the access order – when an item is accessed, it is placed at either the front or tail of the 

list.  When a cache slot is needed, it takes an item from the other side of the list to reuse.  A 

hash-table is often used for fast look up of specific items. 

1.3 XOR Linked List 

An unusual form of a doubly-linked list is the XOR linked list.  This combines references to the 

next and previous nodes.  The downside is that operations require tracking two nodes, and 

performing bitwise operations on pointers or some other reference.  To iterate the list: 

for (I=List; I ; I ^= I->ForwBack) 

… 

To append a Node, one tracks a reference to the tail of the list: 

Tail->ForwBack ^= Node; 

Tail = Node; 

Figure 3: Circular lists 

Figure 4: Doubly 

linked list 

Courtesy Honeywell. 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   5 

 

To insert a Node between A and B: 

A->ForwBack ^= B^Node; 

Node->ForwBack   = A^B; 

B->ForwBack ^= A^Node; 

To remove a Node, you will need to know the node before the one to be removed: 

Next   = Node->ForwBack ^Prev; 

Prev ->ForwBack ^= Node^Next; 

Next->ForwBack ^= Node^Prev; 

2 Bitmaps 
Bitmaps are sets of bits accessed by index.  The bits represent items (which tasks to run, 

resources in use, etc.), or expressions (e.g. binary relations).  In special cases, when items are 

identified by cardinal numbers, bitmaps can sort a set faster than other methods. 

Counting the number of items represented in the bitmap can be done with a population count 

operation on each word of the bitmap.  It is even possible to see if any bit greater-than bit X is 

set, or any bit less-than bit Y is set. 

2.1 Bloom Filters 

Bloom filters are fast screening tools – quickly reporting if an item can’t possibly be in the set.  

If the probability of an item being in the set (e.g. a set bit) is more than 50%, you should invert 

the bits before or’ing into the bloom filter.  A Bloom filter uses one or more filter functions – a 

number called m.  To insert a record into a Bloom set: 

for (I = 0; I < m; I++) 

{ 

   BIdx = hash[I](key)%k; 

   Bitmap[BIdx/32] |= 1u<<(BIdx%32); 

} 

To see if any item is a member of the Bloom set: 

for (I = 0; I < m; I++) 

{ 

   BIdx = hash[I](key)%k; 

   if (!(Bitmap[BIdx/32] & (1u<<(BIdx%32))) 

     return 0; 

} 

return 1; 

2.2 Hierarchical Bitmaps 

By squeezing out the zero bytes (or words) bitmaps can be compressed enough to represent large 

sets.  This is useful for mapping keywords to a large number of files. 

To do so, the conventional bitmap is placed at the lowest level.  Each bit (except in the lowest 

level) refers to word in a lower level; it is set if the corresponding lower level word is nonzero.  

In this example there are only 8 bytes in the bitmap, so the next layer up is a single byte bitmap.  

With two or more bytes in a level, the process repeats with a higher level.  This tree looks like: 

Henry S. Warren, 

Hackers Delight, 2002, 

Addison Wesley 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   6 

 

Figure 8: Circular Buffer 

Tail 
(newest)

Head 

(oldest)

 

0 00 00 0 0 0

1 00 00 0 0 0

0 00 00 0 0 0 0 00 00 0 1 00 00 00 0 0 0
 

Next the tree is traversed, depth first.  Each word is written to the output string.  Then each child 

is visited only if its bit in the current mask is set.  Our example becomes, compressed: 

0x80 0x02 

The interpretation of the bitmap is similar to the above.  The drawback is that the code is 

complex, compared to accessing a flat bitmap. 

Note: Directly using the population count on the bytes will produce a count that is greater than 

or equal to the actual count of members.  This is useful as a fast approximation. 

2.3 Semantic Features as Bitmaps 

A bitmap can hold the semantics of a concept or object. Each bit corresponds to a property (or 

property-value pair) akin to a 20-questions game – male, female, bigger-than-a-breadbox: 

man – human, adult, male 

woman – human, adult, female 

boy – human, male 

girl – human, female 

When a property may take on different values – such as color or mass – each property and 

possible-value pair is assigned a bit.  The same is true for comparative values such as heavier-

than-a-toaster, or bigger-than-a-breadbox. This method works surprisingly well despite its 

simplicity. 

3 Arrays, Buffers and Tables 
Arrays, tables and buffers are defined by their use of an index to access a node and its fields.  

The index identifies the slot where a node is stored; trees and networks reference a node directly. 

3.1 Stacks 

Often two areas (e.g. stack and local variables, or multiple stacks) are used.    They are spaced 

so as to not overlap, but a grow-to-the-middle approach reduces the impact of those cases 

where one does overflow.  Otherwise a stack overflow would corrupt the used parts other 

stacks after it.   Since both stacks are seldom at their max at the same time, this approach 

reduces the likelihood of damage.  On machines without enough memory to support guard 

spacing, this serves as a best effort technique. 

3.2 Circular Buffers 

A circular buffer is a dynamic stack (built on an array).  Usually holding data to process, this 

buffer can be used as a task run-list.  They are used in multiprocessing system since it is easy to 

add or read blocks with little or no locking.  Three thresholds may be used: 

 When the number of entries exceeds a threshold, the source is disabled, or lowered in 

priority.  

Figure 5: Two-level 

hierarchical bitmap 

Figure 6: Tree 

traversal 

1 00 00 0 0 0

0 00 00 0 1 0
 

Figure 7: Grow to the 

middle 

0
1
2

0
1
2

 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   7 

 

 When the number of entries falls below a threshold, the source is enabled, or raised in 

priority 

 When the number of entries exceeds a threshold (e.g. zero) the sink process is enabled. 

Number of entries: (number of slots+tail – head) % number of slots 

Two tails can be used for multi-process enqueuing 

3.3 Chains of circular buffers 

A chain of buffers has the advantage of flexible use.  Space constrained systems can buffer 

memory by dividing it into a n circular buffers (of various sizes), but not with a fixed 

allocation to any single task.  This allows tasks to allocate, use and discard buffers on demand, 

although there is not enough memory to dedicate to each task.  (It is still possible to run out of 

buffer space in overload conditions). 

It can also be employed as a string or IO buffer with fast prepend, append, and character access 

operations.  (Traditional strings need to be copied for modification) 

3.4 Control Bands 

Control bands define ‘normal’ variable ranges, and actions triggered when the variables leave 

that range: 

 

 

A similar table identifies actions to take when the variable is below a value.  The lowest (or 

highest) crossed threshold can be found using a binary search – if sorted on the variable and 

threshold value. 

3.5 Timers 

Timers can be implemented as a variation on control bands – a variable identifies a clock, and 

the trigger value serves as the time stamp.  If an identifier is tracked, a timer can be cancelled.  

Expired timers are removed from the table and periodic timers need to reschedule themselves. 

Timers commonly segregated into separate tables, based on clock source, and count down to 

zero.  On zero, the action the action is triggered. 

Timer# Ticks Left Action 

2 8 disconnect power 
4 64 Start beep 

Like the earlier timer table, this table can be updated less frequently.  There is an elegant way to 

track the tick count since the last update, without locks, working even when the tick counter rolls 

over.  Using variables, of word-size that allow accessing the counter atomically: 

Tmp = grab tick counter atomically 

Var# When > Action 

2 8 disconnect power 
2 9 reduce PWM speed 
4 60 Beep 
4 64 Blink light 

Table 1: Control band 

upper-range example 

Table 2: Count-down 

timers example 

Courtesy Jim 

Hartmann 

 

BSD has a similar 

technique called c-lists 

 

Figure 9: Circular buffer 

chain 

Tail (newest)

Head (oldest)

 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   8 

 

Number of ticks since last update = Tmp – Mark 

Mark = Tmp 

Update the count-down table 

A circular queue speeds timer access.   Each slot links to a list of actions. For each timer tick the 

head pointer is moved, and the list of actions is performed.  An empty queue – when the head 

and tail meet –may be repopulated from a spill table, in the form discussed earlier.  The timers 

are offset appropriately; lists are made and inserted into the slots.  Appending a new timer 

appends to an existing slot, to the end of the queue (if room), or to the spill table. 

3.6 Hash Tables 

Hash tables are a fast associative storage.  The table size should be a prime number.  

Given a key, two hashes values and two working variables are computed from the key: 

The index is initially set to the first hash value (mod the table size).   

The probe value is initialized by second hash value (mod the table size).  It 

must be at least 3. 

To fetch an item, examine the entry at the index.  A matching key settles the matter.  

An empty slot means the item isn’t a member. Otherwise, add the probe value to the 

index, wrapping around the table as needed, and repeat the process.  With large keys, 

this can be sped by storing the key’s hash value in the table and comparing it first. 

Storing an item is the same process – except that the entry is added (if it doesn’t exist already) in 

the first empty slot encountered.  When 90-95% full, the table will have to be expanded and 

rebuilt.   

The hash table can store multiple items with the same primary key.  This is useful for sorting 

items by a secondary key (e.g. priority).  While inserting, if an item is found with the same key, 

the secondary keys are compared.  If the current entry is less than or equal to the item being 

inserted, everything continues as before.  Otherwise, the values are swapped – the current entry 

is preserved, and the item is inserted into slot.  Then the process continues, attempting to insert 

the saved item. 

A hash table can also sort random input.  To do this the probe value is fixed at 1, and the index 

value does not wrap around.  If the value exceeds the table size, the table must be rebuilt with a 

larger size.  When a miss occurs while inserting into the table, the keys are compared.  If the 

current entry is less than the item be inserted, everything continues as before.  If the entry is 

greater, the values are swapped – the current entry is preserved, the slot erased, and the new 

item inserted.  Then the process continues, but attempting to insert the saved item. 

Figure 10: Timer 

Buffer

 

 

Courtesy FreeBSD 

 

Table 3: Hash table 

example 

Key Hash Value 

foo  1 
bar  2 
eek  3 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   9 

 

3.7 Topological sorts 

Sometimes we would like to specify rules of ordering items – A must happen sometime before 

B, or B must occur after A, etc. – and produce an ordered list from these rules.  Topological 

sorting is one way to do this.  The rules are represented as a dependency table, which is then 

scanned. 

1. All of those items in the run list that have finished are placed onto the completed list. 

2. All of the waiting items whose dependencies have been completed (or do not dependent 

on anything) are placed (in any order relative to each other) onto the run-ready list. 

3. If the run-list is empty, but the waiting-list isn’t, there is a cycle. Topological sorting is 

well-defined only with a directed graph – if the graph has a cycle an arbitrary cut must 

be made to provide an approximate ordering.  To do this, a waiting item is randomly 

selected and placed onto the run list. 

0
1
2

Completed

Before After 

  

  

 

0
1
2

Run List

 

Efficiency improvements are possible, such as using a hash-table discipline or sorting the table.  

Another is to track the number of items a task depends on, decremented it as the dependencies 

complete.  Zero count items are then moved (in any order) to run-ready table.  Linkers add a lazy 

population step – items are considered only when needed by some other required or needed item. 

3.8 Annotating Objects 

Items – objects – can be annotated with name-value pairs.  The following address book entries 

illustrate the concept.  Links to other entries are made symbolically, requiring matching the 

values of items with the name attribute. 

objId Name Type Value 

1 name string Adam Jones 
1 email string adam@jones.org 
1 age int 33 
1 spouse string Bethany Jones 
1 child string Chuck Jones 
1 father string Bartleby Jones 
1 mother string Diane Jones 
2 name string Bethany Jones 
2 spouse string Adam Jones 
2 child string Chuck Jones 
2 father string Ethan Kirk 
2 mother string Frieda Kirk 

To find all email addresses in a business card, one would: 

1. Scan the array entries in this node or that have this node as an ancestor. 

2. Keep those entries whose type is a string, and whose Name is ‘email.’ 

Figure 11: 

Topological sorting 

0

1

2

Results

Before After 

  

  

 

 

 

Figure 12: Topological 

sorting 

Table 4: Address 

Book example 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   10 

 

3.9 Extent (Span) Tables, Interval Sets 

Span tables have entries with a start and stop location.  Span tables work well with one 

dimension variable and when entries can’t overlap (see Range Trees for another technique that 

works with multiple dimensions.) 

ANNOTATING TEXT.  A file or text may be annotated using such a table.  This may be used to 

mark up portions to indicate their font typeface or attributes such as bold or italic.  The 

annotations can also cross-link to other portions of the text, provide comments, and so forth.  

Below is an example annotation array: 

Start Len Name Type Annotation 

0 8 fontWeight string bold 
0 8 fontFamily string Helvetica 
28 64 link URL Link to earlier section 
28 64 comment string Comment 

DEPTH-FIRST TREES AS AN ARRAY.  Trees can be flattened out (depth-first) and stored as a span 

table – one of the few ways of storing trees in SQL databases.  B is a child of A, if B’s start is 

greater than or equal to A’s, and its end is less than or equal to A’s.  If the tree is sorted, there are 

no more children when an entry is found with a start greater than the given parent’s end.  This 

sort by the start value (in ascending order) and the end value (in descending order). 

To implement such a tree, you may need an arbitrary numbering scheme.  For instance, start with 

a (possibly imaginary) root node given the full integer range.  Each child has a span equal to the 

parent’s divided by a max number of children per node (possibly per node at that level).  Their 

start and end values are computed as appropriate, and the process continues. 

4 Tree Structures 
Trees come in two forms: top-down where each node specifies its children, or bottom-up, with 

each node specifying its parent.  The node’s identifier, unlike with tables, is fixed and can not 

change – e.g. an address or index.  Trees can form complex structures, any structure in this 

document, albeit with some complexity. 

4.1 Threaded Interpretative Language 

In a threaded interpretative language, procedures are a nil-terminated array of other nodes to 

call.  Many Forth implementations use such a system.  Special built-in nodes can be used to 

manipulate the stack.  A layer may be used to allow replacing modules. 

4.2 LISP’s method: Trees based on Linked-lists 

A tree can be made from linked lists – a node references the “first child” of a linked list of its 

children.  The rules for trees based on linked-lists are: 

 A node is the parent of exactly those nodes in the linked-list of its first child. 

 Children of a level n node are at level n+1 

A node has two fields next and firstChild.  The next field may point to another node or nil. 

  

 

Table 5: Annotation 

example 

Joe Celko popularized 

this technique in his 

articles and “SQL for 

Smarties” books 

LISP calls this a cons 

list 

next is called cdr 

firstChild is called car 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   11 

 

firstChild

next next

next

 

A child may be a second kind of node.  This node is used to hold the value – a number, a string, 

and so forth. 

A LISP procedure is a list of nodes to call, where the firstChild is a list of the call’s parameters.  

This is similar to a threaded-interpretive language.    LISP determines whether each parameter 

element should be evaluated prior to the call.  This is done with a complex procedure, which is 

inconsistent between LISPs; this is an instance of LISP’s genetic capacity for making mistakes. 

A variant of the child lists can use circular lists, pointing to the last child of the list; next points 

to the first child. 

lastChild

next next

next

next

next  

4.3 Three-Level Indirection Tree 

Three level indirection trees are most often used to implement very large arrays (e.g. vectors).  

This type of structure is fast at updating. 

This structure is often used in file systems to distribute blocks of the file across the disk.  The 

structure has less depth at the tail – to allow growing the file quickly.  

 

 

4.4 Directed Acyclic Graph (DAG) 

Directed acyclic graphs are a compressed form of trees. Many nodes can point to the same node, 

but they can’t loop back.  If it is the same leaf, they don’t need duplicates.  Common with other 

types of trees. 

 

4.5 Range Tree (rtree) 

Range trees are generalized span trees.  They serve the same role as a direction graph (which we 

will discuss later), including: 

 Finding all items within a geometric region,  

 Attributing (marking up) maps and other geometric items – e.g.  adding place 

names locations images and textures. 

 Creating regions – e.g. states, counties, etc – on a map. 

Each subtree in a range tree specifies the perimeter around an n-dimensional rectangle. 

Figure 13: Child lists 

 

 

LISP calls value car 

Thanks to John 

McCarthy for the 

genetic phrase 

Figure 14: Child rings 

 

 

Figure 15: Three level 

tree 

 

 

Figure 16: Directed 

acyclic graph 

 

 Figure 17: Example of 

Range tree 

V1

V2

V3

V4

V5

V6

 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   12 

 

The tree can be structured in any manner described earlier.  The key difference is that each node 

has an origin and size vectors.  Every child node’s origin and size is contained within its parent.  

This allows finding all the items within a region. 

5 Networks and Graphs 
Networks may be represented in several forms; the most common type use node with pointers, a 

table, or a matrix.  These build on and generalize the tree structures.  Networks are the base 

structures for more types, such as the finite automatons in the next section. 

5.1 Direction graph 

Direction graphs are made of nodes with two items for each dimension – the first of the next cell 

in the “previous” direction along that dimension, and the other for the next cell in the direction 

along the given dimension.  Where the Range tree specifies the perimeter around a n-

dimensional rectangle, a direction graph specifies how cells link together.  This makes it easier 

to walk-around (traverse a graph). 

 

Prev Next 

  

  

  

 

 

Prev Next 

  

  

  

 

 

Prev Next 

  

  

  

 
 

Infocom’s Z-machine used 4-links to neighbors to the east, west, north and south.  The diagram 

below describes how a floor map can be dissected into 5 cells.  To construct the direction graph: 

1. Draw a floor map. 

2. Draw straight lines all the way thru for each of the walls. 

1

2

3

4

5

 

At this point there is a choice: either number the boxes, or number the lines.  Lets do it with the 

boxes; you can skip boxes that you can’t get into.  For each box: 

3. Add a row to the table below 

4. Fill in spot for the box number 

5. If there is no wall to the right, add the number for the box to the right. The direction 

with only a “wall” has a nil for its neighbor in that direction. 

6. Repeat for the left, up and down. 

This can be made more interesting with a door.  The system can use a table to answer if one can 

traverse a link: 

Figure 18: Direction 

graph 

 

 

Figure 19: Example 

floor map 

 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   13 

 

From To Check 

1 3 Door1IsOpen() 
3 1 Door1IsOpen() 
   

 

The Can() checks to see if there is an entry in the edge check table; if there is, it queries the 

function to see if traversal is allowed.  In this example going between room 1 and 3 checks to 

see if Door1 is open.  The table is directed – if the check for going from 3 to 1 wasn’t present, 

Door1 would behave more like a trap door, allowing us to always to go into room 1, but only 

sometimes to go into room 3.  Doors are finite automatons, which will be discussed later. 

5.2 Type Conversion 

Many languages and context have implicit conversion methods.  A table of conversion allows us 

to automatically convert between types: 

From Type To Type Cost Conversion Action 

float double 0  
double float 1  
    

 

A lossless conversion has a cost of 0, while lossy ones have higher numbers.  Converting from a 

float to a double is lossless; converting from a double to a float has some loss.  Typically this 

table is converted into a matrix (representing a weighted graph) and a standard kit of algorithms 

is applied to determine the lowest loss (least costly) set of conversion steps to follow. 

In most cases, you want an incremental algorithm, e.g. Floyd Warshall’s or Djisktra’s.  These 

construct a sequence of conversion actions to make.  In rare cases you may want to pre-compute 

every possible conversion, use the all points shortest graph algorithm.  The key is that these find 

the shortest path to follow, and avoid cycles: going from float to double back to float is silly. 

5.3 Unit conversion 

Converting between numerical units follows a similar process.  Typically the conversion from 

one unit to another employs a formula of the form: 
01 ccv   

From Unit To Unit C1 C0 

Dinar dollar 0  
Celsius Fahrenheit 1  
    

 

This is again converted to a graph, and the algorithms are applied.   You can use the same 

incremental techniques mentioned in the previous section.  Or you can pre-compute a matrix that 

converts from each unit to every other unit; this is called a closure.  The advantage, unlike with 

type conversion, unit conversions are more widely distributed across units than types. 

First, start with a directed graph.  The computed the closure is used in a sparse form like so: 

Table 6: Edge check 

Table 7: Type 

conversion 

Table 8: Unit 

conversion 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   14 

 

1

0

0



value

valueconverted  Closure
 

These benefits greatly from fast matrix and vector representations (see section 7). 

6 Finite Automatons 
Finite automatons create dynamic and responsive behaviours by adding state sensitivity to tables 

and networks.  This allows construction of decision trees, routing tables, parsers and other 

sophisticated behaviour.  States themselves may have enter and exit actions, and transition 

actions. 

State Enter Action Exit Action 

   
   
   

 

From State To State Action 

   
   
   

 

6.1 Decision Trees 

A decision tree can be used to perform bitwise pattern matching, IP Address routing, or classify 

an item using feature sets.  These trees are models examining the interaction between or cause-

and-effect of different factors.  In some contexts, they are known as Patricia tree and radix trees.  

The tree itself is a directed acyclic graph.  Each node is a rule, in one of three forms: 

 If the item matches, go to Rule X; otherwise go to rule Y 

 If the item matches, return X; otherwise go to rule Y. 

 Perform no match, the Items is X or perform action Z (covered in tables above) 

Algorithms such as ID3 or C4.5 can be used to construct the tree.  

6.2 Deterministic Finite Automatons (DFA’s) 

Deterministic finite automatons (DFA’s) are structurally simple and easy to understand.  Each 

state is fetched from a look-up table and is used to map input events or symbols to the next state. 

This simplicity makes them one of the fastest matching techniques. 

DFA’s may be created from NFA’s (see the next section).  Alas many such DFA’s are inelegant.  

The translation from NFA to DFA can create some pretty hairy monsters with a huge numbers of 

states and nodes. 

Table 9: State 

transition actions 

Table 10: State 

transition actions 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   15 

 

6.3 NFA Parser using State and Hash 

NFAs perform faster than DFA’s for some types of matching specifications; DFA’s can be 

converted into NFA’s for these cases.  The NFA interpreter must keep a list of possible states it 

may currently be in.  The node transition reduces or expands this list. 

This can be implemented as a single table using state numbers or use pointers to further tables.  

A parser may include a precedence number, used with grouping arithmetic operations.  The 

primary key (in a hash table) is the <state number, symbol> pair; the precedence is the secondary 

key, and the table is kept sorted as described in the hash table section. 

State Symbol Hash* Precedence Next State Action 

      
      
      
      

The main drawback of this form, rather than a tree-form, is the expense to modify the grammar. 

6.4 Hashed Trie 

A trie is both a tree and a DFA, thru the use of special entries and an extra column.  A hashed 

trie is used for performance – it’s key look up time is O(key length).   This is structure could be 

used for UNIX-style mount-tables, and performing morphological analysis such as spell 

checking.  The Hashed Tries is special because it allows fast matching, the ability to enumerate 

all possible strings it will match (in sorted order, no less) and return the parent of a given 

matched node. 

A hashed trie can be implemented with a state-number (or a state selector), using a single table 

(as below).  States include entries with a nil symbol whose next state is used to link back to the 

parent.  Combined with the optional next sibling node one can enumerate all possible strings in 

sorted order.  The parent node can be found by scanning the next-sibling chain to find the entry 

with a nil symbol.  

State Symbol Hash* Next State Next Sibling* Action 

      
      
      
      

 

6.5 Hierarchical State machines 

Hierarchical state machines are a chain of state machines, passing events from top-most state 

machine down until one processes the event.  Their most common use is to provide a consistent 

look and feel in GUI systems.  

The typical formulation is a series of operations like that in the example.  A state machine may 

pass an event – or the output it’s processing of the event – as the input to another state machine.  

These “other” state machine may include the standard library of  processors or responses, and 

allow the programmer to selectively override some handlers or inject events 

1. Get event (message) 

Table 11: Hash table 

example 

‘trie’ is short for 

retrieval structure 

Table 12: Hash trie 

example 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   16 

 

2. If my handler 1, call my handler 

3. If ok to call system handler 1, call system handler 1 

4. … 

5. down to handler n 

7 Matrix 
A variety of stylized forms of matrices have been defined in mathematics, and concrete 

structures exist to better serve these.  Most often these special forms are used to speed 

multiplication, but they may also speed other operations.  Most special cases matrices being: 

 Zero and identity matrices, allowing especially fast at multiplication and addition 

 Dirac matrices of ones and zeros, which can be compactly implemented as bitmaps 

 Triangular matrices (upper left and lower right) which are faster for multiplication 

 Compact sparse matrices, which are very fast at multiplication 

Some of the special forms relate to how the matrix cells are structured and the impact on key 

matrix operations: 

 Row-indirection (faster for LU decomposition) 

 Column-indirection (faster for vector concatenation) 

Vectors with one or two non-zero elements can be treated as special forms, tracking the row(s) 

and value(s). 

7.1 Compact Sparse Matrix 

A compact sparse matrix has three parts: 

 A value array, 

 A column index array (to index each value within a row), and 

 An extent array that holds the starting index in the value for each row. 

HOW TO MAKE A MATRIX. Scan the matrix, 

for (Y = 0; Y < Height; Y++) 

{ 

   NumElems = 0; 

   for (X = 0; X < Width; X++) 

    if (0 != Matrix[X,Y]) 

      { 

          Append Matrix[X,Y] onto values 

          ColIndex[NumElems] = X; 

          NumElems++; 

      } 

 

   if (Extent is Empty) 

     append NumElems 

    else 

     append NumElems + previous value in Extent 

} 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   17 

 

HOW TO MULTIPLY AGAINST A VECTOR: 

Sum = 0; 

Ofs = Extent[Row] 

RowWidth = Extent[Row+1] - Ofs 

for (X = Ofs; X < Ofs+RowWidth; X++) 

 Sum += Value[X] * Vector[ColIndex[X]] 

Result[Y] = Sum; 

 

8 3D shapes 
3-D (and any other) shapes employ a number of interesting structures.  Many 3D objects 

describe shapes by lists of triangles, and describe scenes of 3D objects as trees of the objects and 

their transforms. 

8.1 Vertex Lists 

DirectX 3D and OpenGL work by passing lists of points describing triangles.  These lists allow 

a specific type of compression reducing data movement – almost every shape reuses many of the 

points.  This is akin to the dictionary in data compression: a table of vertices, and a brief list of 

which vertices to use.  This approach also allows computing patterns, so that software doesn’t 

have to fully enumerations of all the points, filling huge regions of memory. 

Each point can be given a set of attributes, such as 

 The color at the point; this gives triangle gradient shading. 

 The surface normal for the point, which is used for lighting effects on triangles. 

 A mapping to a point in a texture image. 

Destination Point Source Image Point 

  
  

This section is laid out from the most generic, to handling special cases: 

 Vertex lists 

 Strips, where every triangle shares two vertices with its neighbor 

 Fans, where every triangle shares the same vertex 

Which of these to use?  The latter ones reduce the number of vertices needed to be moved to 

draw the image.   

Type #Vertices 

List 3 * number of triangles 
Strip number of triangles + 2 
Fans number of triangles + 2 

Table 13: Texture 

mapping 

Table 15: Costs of 

different formats 

Table 14: Vertex list 

Vertex 

1 
2 
3 

 

 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   18 

 

 

VERTEX LIST.  Every three points forms a triangle to draw on the screen.   

V2

V3V1 V5

V4 V6

 

VERTEX STRIP.  Two points from the previous triangle is reused 

V2

V3V1 V5

V4 V6

   

VERTEX FANS.  The first point is reused, and the last points from the previous triangle is reused 

V2 V3

V1

V5

V4

V6

 

8.2 Textures 

Textures combined with vertices allow for fast, compact animation.  For example, one can make 

Pixar’s Luxo Jr animation that fits on old floppy – or uses bitrate compatible with old modems.  

Initially the animation would have to send: 

 Textures for background and lamp surfaces 

 The initial vertices 

 The links between the vertices, and with the texture. 

The animation from that point is just a matter of sending the new vertex locations. 

8.3 Scene Graphs 

A scene graph is very useful for representing 2D and 3D shapes and scenes.  It is a tree of shapes 

and affine transforms; each node is one of three kinds: 

1. An affine transform, with a child list of other nodes 

2. An image 

3. A vertex list (see previous section). 

Figure 20: Example of 

triangle list 

Figure 21: Example of 

triangle strip 

Figure 22: Example of 

triangle fan 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   19 

 

9 Unification 
Unification is useful for solving expressions or rearranging them into a solvable form.  Variables 

have three parts: a value, an indication whether it is bound, and a link to another variable.  

SIMPLE UNIFICATION.  The first steps of unification are inferring values and sameness of 

variables.  When there is an A=B (or implicitly with a functional call): If A and B are both 

variables, then they are linked together.  If B (or A) is a value, then the chain is checked to see 

that the variable either is (1) bound to the same value or (2) isn’t bound, causing the variable to 

be bound to the other variable or value.   

UNIFYING LISTS.  This unification process can be expanded to complex structures.  Lists are a 

good example.  A free variable is unified with list by binding the variable to the list.  Two lists 

unify by going over each positions in the lists and unifying: 

For X = next item in List A, Y = next item in list B,  

unify X and Y. 

stop if failure. 

Trees, matrices, and tables can be unified in a similar manner. 

10 Appendix: Structure equivalence 
This is an appendix to describe how to determine whether two structures are related or can do 

similar things.  This analysis ignores performance variations (e.g. computational, memory or IO 

complexity). 

Abstract structures are structures, except they are defined in terms of functions or relations on 

the structure – set membership, disjunction, etc.  In this document, references have been pointers 

but they could be array indices, even relative offsets for indices and pointers.  Abstraction goes a 

step further – given a structure or a node, you have a defined way to know what the next node is 

(in abstract lists).  It may be complex process to determine this next node. 

In relational databases, looking for structure equivalence is called Schema matching. 

1. Compare structures A and B for equality, using methods below 

2. Find the most significant structure that A and B are both partially equally to.  Such a 

structure may be in this document, or a new one that was identified by this process. 

There are three means of equivalence presented below.  They are presented in order of simplicity 

(and performance of evaluation). 

 Comparing the fields 

 Defining common functions 

 Defining common relations 

The latter two are important since they define an intermediary form of using the structure – 

many different structures can be manipulated by the same algorithms (or a small number of 

variations).  Simply using fields expands how often a given algorithm must be implemented. 

10.1 Strict field equivalence 

Two structures can be compared on a field-by-field basis.  This method uses or creates a 

mapping of the names of one structure onto those in the other.   Such a mapping would be 

unnecessary if all structures employed the same name for the same purpose; in practice the 

Figure 23: Unification 

structure 

value
 

 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   20 

 

names vary as a matter of style and practical concern.  (This is an identity only in the most trivial 

of structure equivalences).  Most often a structure is a subset of another – not all fields in one 

structure are in another.  Determining this: given by a human, or inferring by substantial 

similarity.  The table below provides an example mapping the fields of a list and a tree. 

List Tree 

 lastChild 
next nextSibling 

Each structure field is mapped to unique name.  Then a disjunction of the two sets of unique 

names is performed. 

 If all of A’s fields are employed by B, but B has fields that aren’t shared with A, 

then A is ≤ B.  In this example, a list is a subset of tree.  Otherwise,  

 If A and B have the same fields (i.e. there is an equivalent or comparable field),  the 

structures are functionally equal 

If A and B share none of the same field, a more complex analysis is need to determine possible 

relationship.  

10.2 Equivalent by functions 

The next technique requires each structure to provide a definition for well known functions, and 

creating a mapping between functions in with each structure.  In many cases, the functions 

simply access a field.  But consider the two kinds of trees mentioned in section 4.2.  Both trees 

define a next(n) function for each node.  The tree that is built on the firstChild field has a 

simple firstChild(n) function.  The tree that is built on the lastChild field can define a 

firstChild(n) function as next(firstChild(n)). 

 A is ≤  B if all of the functions defined for A are defined for B, but B has other 

well-defined functions that A does not 

 If A and B both have the same functions defined, they are functionally equal 

 A is ≈ B, if all of the functions defined for well-known type C are defined by A and 

B.  Recommend finding the most powerful well-known type that this is true for. 

10.3 Equivalent by relation 

The last technique employs the relations.  Relations go beyond functions.  They are used, for 

example, in SQL statements.  For example, two nodes are siblings if they have the same parent, 

but are not the same person: 

Sibling(n1,n2): Parent(n1,p), Parent(n1,p), n1 != n2. 

The procedure to implement the Parent() relationship may be a list scan, or a pointer access.  If 

it were written as a function, you’d typically write p=Parent(n1).  With relations, there is 

(implicitly) two other functions n1 <= Children(p), and IsChildOf(p, n1). 

 A is ≈ B, if each of A’s conditions has an equivalent condition on B (and vice-

versa) 

 A is ≤  B if all of the conditions on the relation for A are defined for B, and each of 

the data sources is for A are less-than or equal to those defined for B. (B may have 

further conditions) 

Table 16: field 

equivalence example 



B E A U T I F U L  S T R U C T U R E S  ·   2 0 1 8 . 0 5 . 2 6   21 

 

11 Appendix: Suggestions 
This is an appendix to offer some suggestions to make a structure generic.   

Do: functions should be named after a noun or adverb.  Rather than nextToEast(n), prefer 

next(n, direction). 

An intermediary form – many different structures can be manipulated the same (few) algorithms. 

Suggested names for functions 

 next(n) 

 next(n,direciotn) 

 firstChild(n) 

 value(n) 

 value(n, field) 

 nodeForName(name) 

 endOfChildList(n) 

 lastChild(n) 

 cost(from, to) 

 action(from, to) 

 parent(n) 

Suggestions for relation names 

 parent(n,p) 

 child(p,n) 

 value(n,v) 

 value(n,field,v) 

 value(f,t,v) 

 cost(f,t,c) 

 action(f,t,a) 

 next(n1,n2) 

 next(n1,n2,direction) 

Beauty seldom alights in the complex, while arcs and nodes, properly drawn, give a sense of 

elegance.  The diagram may have simplicity, balance or symmetry, parallel development, even 

tension. 


